Models / Chat / DeepSeek R1 Distilled Llama 70B Free API
DeepSeek R1 Distilled Llama 70B Free API
Free
Chat
Reasoning
Free endpoint to experiment the power of reasoning models. This distilled model beats GPT-4o on math & matches o1-mini on coding.
Try our free DeepSeek R1 API

API Usage
How to use DeepSeek R1 Distilled Llama 70B FreeModel CardPrompting DeepSeek R1 Distilled Llama 70B FreeApplications & Use CasesDeepSeek R1 Distilled Llama 70B Free API Usage
Endpoint
deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free
RUN INFERENCE
curl -X POST "https://api.together.xyz/v1/chat/completions" \
-H "Authorization: Bearer $TOGETHER_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
"messages": [{"role": "user", "content": "What are some fun things to do in New York?"}]
}'
JSON RESPONSE
RUN INFERENCE
from together import Together
client = Together()
response = client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
messages=[{"role": "user", "content": "What are some fun things to do in New York?"}],
)
print(response.choices[0].message.content)
JSON RESPONSE
RUN INFERENCE
import Together from "together-ai";
const together = new Together();
const response = await together.chat.completions.create({
messages: [{"role": "user", "content": "What are some fun things to do in New York?"}],
model: "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
});
console.log(response.choices[0].message.content)
JSON RESPONSE
Model Provider:
DeepSeek
Type:
Chat
Variant:
Distilled
Parameters:
70B
Deployment:
✔ Serverless
Quantization
Context length:
131K
Pricing:
Free
Run in playground
Deploy model
Quickstart docs
Quickstart docs
How to use DeepSeek R1 Distilled Llama 70B Free
Model details
Prompting DeepSeek R1 Distilled Llama 70B Free
Applications & Use Cases
Looking for production scale? Deploy on a dedicated endpoint
Deploy DeepSeek R1 Distilled Llama 70B Free on a dedicated endpoint with custom hardware configuration, as many instances as you need, and auto-scaling.
