Fine-tuning language models over slow networks using activation compression with guarantees
Communication compression is a crucial technique for modern distributed learning systems to alleviate their communication bottlenecks over slower networks. Despite recent intensive studies of gradient compression for data parallel-style training, compressing the activations for models trained with pipeline parallelism is still an open problem. In this paper, we propose AC-SGD, a novel activation compression algorithm for communication-efficient pipeline parallelism training over slow networks. Different from previous efforts in activation compression, instead of compressing activation values directly, AC-SGD compresses the changes of the activations. This allows us to show, to the best of our knowledge for the first time, that one can still achieve O(1/T‾‾√) convergence rate for non-convex objectives under activation compression, without making assumptions on gradient unbiasedness that do not hold for deep learning models with non-linear activation functions.We then show that AC-SGD can be optimized and implemented efficiently, without additional end-to-end runtime overhead.We evaluated AC-SGD to fine-tune language models with up to 1.5 billion parameters, compressing activations to 2-4 this http URL-SGD provides up to 4.3X end-to-end speed-up in slower networks, without sacrificing model quality. Moreover, we also show that AC-SGD can be combined with state-of-the-art gradient compression algorithms to enable "end-to-end communication compression: All communications between machines, including model gradients, forward activations, and backward gradients are compressed into lower precision.This provides up to 4.9X end-to-end speed-up, without sacrificing model quality.
- Lower
Cost20% - faster
training4x - network
compression117x
Q: Should I use the RedPajama-V2 Dataset out of the box?
RedPajama-V2 is conceptualized as a pool of data that serves as a foundation for creating high quality datasets. The dataset is thus not intended to be used out of the box and, depending on the application, data should be filtered out using the quality signals that accompany the data. With this dataset, we take the view that the optimal filtering of data is dependent on the intended use. Our goal is to provide all the signals and tooling that enables this.
article